Technical Specifications
Installation & Maintenance Manual

SMART
30 - 40 - 50 - 60 - 80 - 100 - 120
Indirect Fired Water Heater

NOTICE

- When receiving the SMART unit, any claims for damage or shortage in shipment must be filed immediately against the transportation company by the consignee.
- Customer must register unit within sixty (60) days of installation in order to gain warranty coverage. See Warranty Card for details.
- Leave all documentation received with appliance with the owner for future reference.
- Installation and service should only be performed by a qualified installer or service technician.
- Installations and service should be performed by a licensed plumber or gas fitter in the Commonwealth of Massachusetts.

WARNING

Before proceeding with installation and operation, read entire manual carefully. Failure to do so can cause property damage or personal injury.
TABLE OF CONTENTS

PRODUCT AND SAFETY INFORMATION .. VII

CHAPTER 1 - PRE-INSTALLATION ... 1

1.1. Codes Compliance .. 1
1.2. Codes Restrictions .. 1
1.3. Operating Restrictions ... 1
1.4. Locating Water Heater .. 2
1.5. Recommended Clearances ... 2

CHAPTER 2 - INSTALLATION - PIPING .. 3

2.1. Temperature & Pressure (T&P) Relief Valve .. 3
 2.1.1 Standard Installation ... 3
 2.1.2 Commonwealth of Massachusetts Installation ... 3
 2.1.3 T&P Relief Valve Discharge Piping .. 3
2.2. Drain Valve ... 4
 2.2.1 Standard Installation .. 4
 2.2.2 Commonwealth of Massachusetts Installation ... 4
2.3. Manual Air Vent .. 4
2.4. Thermal Expansion .. 4
2.5. Water Hammer ... 4
2.6. Vacuum Breaker .. 4
2.7. General Piping ... 4
2.8. Domestic Piping .. 4
2.9. Thermostatic Mixing Valve .. 5
2.10. Recirculation Piping .. 5
2.11. Multiple Water Heater Systems .. 5
2.12. Boiler Piping .. 6

CHAPTER 3 - INSTALLATION - WIRING ... 15

3.1. Wiring Requirements ... 15
3.2. Circulators ... 15
3.3. Zone Valves ... 15
3.4. Snap Set Connection ... 15

CHAPTER 4 - WATER HEATER START-UP ... 21

4.1. Filling the Inner (Domestic Water) Tank .. 21
4.2. Filling the Outer (Boiler Water) Tank ... 21
4.3. Adjusting the Water Heater Thermostat .. 22
TABLE OF CONTENTS

CHAPTER 5 - WATER HEATER MAINTENANCE

5.1 Maintenance Schedule

5.1.1 Annual service by qualified service technician should include the following:

5.1.2 Homeowner monthly maintenance to include:

5.2 Filling Water Heater

5.3 Draining Water Heater

5.3.1 Draining Inner (Domestic Water) Tank.

5.3.2 Draining Outer (Boiler Water) Tank

CHAPTER 6 - REPLACEMENT PARTS

CHAPTER 7 - WATER HEATER SPECIFICATIONS AND PERFORMANCES
INDEX OF ILLUSTRATIONS AND TABLES

Fig. 1 - SMART Clearances - View from the Top ..2
Fig. 2 - Standard Installation - Domestic Piping - SMART Series ...7
Fig. 3 - Standard Installation - Domestic Piping with Recirculation - SMART Series7
Fig. 4 - Optional Installation - Domestic Piping with Recirculation - SMART Series8
Fig. 5 - Drain Tube Assembly - Commonwealth of Massachusetts ..9
Fig. 6 - Commonwealth of Massachussets - Domestic Piping SMART Series ...9
Fig. 7 - SMART System Piping with 3-Port Zone Valve (Domestic Priority) ...10
Fig. 8 - SMART System Piping with 2-Port Zone Valves (Domestic Priority) ...10
Fig. 9 - SMART System Piping with Zone Valves (Non Domestic Priority) ...11
Fig. 10 - SMART System Piping with Zone Circulators ...11
Fig. 11 - Multiple SMART Series Water Heater System Domestic Piping - Parallel12
Fig. 12 - SMART System Piping with Zone Circulators ...12
Fig. 13 - Multiple SMART Series Water Heater System Boiler Piping Reverse Return Balanced Flow13
Fig. 14 - Multiple SMART Series Water Heater System Boiler Piping - Manifold13
Fig. 15 - Snap Set Wiring ...15
Fig. 16 - Typical 4-wire Zone Valve Zoning, with Domestic Priority ..16
Fig. 17 - Typical 3-wire Zone Valve Zoning, with Domestic Priority ..16
Fig. 18 - Typical 4-wire Zone Valve Zoning, without Domestic Priority ...17
Fig. 19 - Typical 3-wire Zone Valve Zoning, without Domestic Priority ...17
Fig. 20 - Typical Circulator Zoning with Domestic Priority ..18
Fig. 21 - Typical Circulator Zoning without Domestic Priority ...18
Fig. 22 - Priority Zone Circulator Wiring ...19
Fig. 23 - SMART Series Temperature Knob ..22
Fig. 24 - SMART Assembly ...25
Fig. 25 - SMART Cover Plate Assembly ...25
Fig. 26 - SMART Dimensions - Side View ..26
Fig. 27 - SMART Dimensions - Top View ..27

Table 1 - Piping dimensions ..5
Table 2 - SMART Water Heater Specifications ..27
Table 3 - SMART Water Heater Performance at 200°F boiler water supply (140°F DHW outlet)............. 28
Table 4 - SMART Water Heater Performance at 200°F boiler water supply (115°F DHW outlet) 28
INTENTIONALLY LEFT BLANK
PRODUCT AND SAFETY INFORMATION

IMPORTANT SAFETY INFORMATION FOR THE HOMEOWNER AND THE INSTALLER

This manual contains important information with respect to the installation, starting up and maintenance of the appliance.

This manual must be provided to the Homeowner, who will keep it in a safe place for future reference.

Triangle Tube accepts no liability for any damage, injury, or loss of life resulting from incorrect installation, alteration of any factory supplied parts, or the use of parts or fittings not specified by Triangle Tube. If there is a conflict or doubt about the proper installation of the unit or any factory supplied replacement parts please contact Triangle Tube Technical Support.

DEFINITIONS

The following terms are used throughout this manual to bring attention to the presence of potential hazards or to important information concerning the product.

DANGER

Indicates the presence of a hazardous situation which, if ignored, will result in substantial property damage, serious injury, or death.

WARNING

Indicates a potentially hazardous situation which, if ignored, can result in substantial property damage, serious injury, or death.

CAUTION

Indicates a potentially hazardous situation which, if ignored, can result in minor property damage, or injury.

NOTICE

Indicates special instructions on installation, operation or maintenance, which are important to the equipment but not related to personal injury hazards.

BEST PRACTICE

Indicates recommendations made by Triangle Tube for the installers, which will help to ensure optimum operation and longevity of the equipment.

DANGER

Hot Water Can Scald!

- Water temperatures over 125°F can cause severe burns instantly or death from scalding.

- Children, disabled and elderly are at highest risk of being scalded.
- Never leave them unattended in or near shower, bathtub or sink.
- Never allow small children to use a hot water faucet or draw their own bath.
- If anyone using hot water in the building fits the above description or if local codes or state laws require specific water temperatures at hot water faucet, it is recommended:
 - To install a thermostatic mixing valve at this appliance or at each water faucet.
 - To set the thermostat knob for the lowest temperature which satisfies your hot water needs.
- Water drained from the system drain valves may be extremely hot. To avoid injury:
 - Make sure all connections are tight.
 - Direct water flow away from any person.

WARNING

Bacteria can develop in the domestic water system if certain minimum water temperatures are not maintained. Failure to maintain at least 140°F [60°C] domestic hot water temperature (using the Antilegionella function of your boiler, if any) can result in bacteria development, which can result in serious injury, or death.
PRODUCT AND SAFETY INFORMATION

CAUTION

- It is prohibited to carry out any modifications to the appliance without prior written consent from Triangle Tube.
- Faulty parts must only be replaced by genuine Triangle Tube factory parts.
- To prevent damage to the inner tank, the Installer must:
 - Always fill inner tank prior to outer tank and always drain outer tank prior to inner tank.
 - Relieve primary system pressure below 15 psig prior to draining inner tank.
- Failure to comply with these instructions can result in minor property damage, or injury.

CAUTION

- Protection must be taken against excessive temperature and pressure! Installation of a Temperature & Pressure (T&P) relief valve is required.
- Failure to comply with these instructions can result in minor property damage, or injury.

NOTICE

- In case of any anomaly, please call your qualified service technician.
- Make sure to reference the unit’s model number and serial number from the rating label when inquiring about service or troubleshooting.
- Triangle Tube reserves the right to change the technical characteristics, components and features of its products without prior notice. Check for an updated version of this manual at www.triangletube.com.
CHAPTER 1 - PRE-INSTALLATION

1.1. Codes Compliance

Water heater installation must conform with the instructions in this manual and where applicable:

- local, state, provincial, and national codes, laws, regulations and ordinances.
- in Canada - CAN / CGA B149.1 or B149.2 Installation Code.

SMART water heaters are exempt from ASME Section VIII, Division 1 Code construction per Interpretation VIII-86-136. Check with local codes for applicability.

NOTICE

SMART Series water heaters will absorb less than 200,000 BTU/hr when domestic water outlet temperature is 210°F and boiler water supply temperature is 240°F. Listed outputs are based on ASME Section VIII Interpretation VIII-1-86-136.

Where recommendations in this manual differ from local, or national codes, the local or national codes take precedence.

1.2. Codes Restrictions

Single wall heat exchanger in the SMART water heater complies with National Standard Plumbing Code, provided that:

- Boiler water (including additives) is practically non-toxic, having toxicity rating or class of 1, as listed in Clinical Toxicology of Commercial Products, and
- Boiler water pressure is limited to maximum 30 psig by approved relief valve.

Single wall heat exchangers are permitted under the Uniform Plumbing code - Paragraph L3.2. and L3.3 if they satisfy all of the following requirements.

1. The heat transfer medium is potable water or contains only substances which are recognized as safe by the U.S. Food and Drug Administration.
2. The pressure of the heat transfer medium is maintained less than the normal minimum operating pressure of the potable water system

Exception: Steam complying with section #1 above.

3. The equipment is permanently labeled to indicate that only additives recognized as safe by the FDA shall be used in the heat transfer medium.

BEST PRACTICE

In hard water areas (more than 7 grains of hardness) soften the cold domestic supply water to the appliance to prevent scaling.

NOTICE

- Any water conditioning system must be installed and maintained in accordance with manufacturer’s specifications.
- Do not install the water heater on any application if the boiler piping contains non-oxygen barrier tubing or if the boiler piping is considered an “open system”. Exposing the tank of the water heater to oxygen contamination will lead to premature tank failure and denial of the warranty.
1.4. Locating Water Heater

- This water heater is not intended for outdoor installations.
- Keep distance between boiler and water heater to a minimum to:
 - Reduce piping heat loss
 - Provide minimal friction loss
- Locate water heater so that any leakage from the tank or water connections will not cause damage to the area adjoining the water heater or to lower floors in the structure.
 - When such a location is unavoidable, a suitable drain pan with adequate drainage, should be placed under the water heater.
- The SMART Series Water Heaters are designed for vertical installation only.

1.5. Recommended Clearances

Water heater should be installed to allow adequate clearance for servicing.
Zero clearance is permissible to any side of the SMART Series water heater that has no connection, but information labels may be hidden.
Also take into account the clearance required for any accessory that needs to be installed on the heating and/or domestic circuits.

Best Practice

- Recommended top or vertical clearance is 12” minimum.
- Refer to boiler manual for boiler clearances.

![Fig. 1 · SMART Clearances - View from the Top](image-url)
2.1. Temperature & Pressure (T&P) Relief Valve

CAUTION

To reduce risk of excessive pressures and temperatures in the water heater, install temperature and pressure protective equipment required by local codes, but no less than a combination temperature and pressure relief valve certified by a nationally recognized testing laboratory that maintains periodic inspection of production of listed equipment or materials, as meeting the requirements for Relief Valves and Automatic Gas Shutoff Devices for Hot Water Supply Systems, ANSI Z21.22. This valve must be marked with a maximum working pressure of the water heater.

- Every SMART water heater must be protected with a T&P relief valve.
- Determine T&P relief valve size by the following specifications, unless they conflict with local codes:
 - SMART 30/40/50: 3/4”NPT with an AGA Rating of 100,000 BTU/hr and a maximum pressure rating of 150 psig. (Watts 100XL-8 or equivalent).
 - SMART 60/80/100/120: 3/4”NPT with an AGA Rating of 200,000 BTU/hr and a maximum pressure rating of 150 psig. (Watts 40XL-8 or equivalent).

NOTICE

For proper operation of the T&P and to prevent the T&P from activating due to boiler water temperature, use a T&P relief valve with extended element. We recommended an 8” minimum length to ensure element senses domestic water.

2.1.1 Standard Installation

- Install T&P relief valve in the Auxiliary connection located behind the air vent on the top of the water heater (Refer to Fig. 2 on page 7).

 or

- Install the T&P relief valve in the run (straight through leg) of a tee located at the domestic hot water outlet when using the Auxiliary connection for a recirculation return (Refer to Fig. 3 on page 7).

2.1.2 Commonwealth of Massachusetts Installation

Follow this procedure for jurisdictions requiring a vacuum breaker to be installed on the domestic cold water inlet.

- Install the T&P valve in the run (straight through leg) of a tee located at the domestic hot water outlet. Use a long element T&P relief valve (Refer to Fig. 6 on page 9).

2.1.3 T&P Relief Valve Discharge Piping

- **T&P relief valve discharge piping must be:**
 - Made of material serviceable for temperatures of 250°F or greater.
 - Directed so that hot water flows away from all persons.
 - Directed to a suitable place for disposal.
 - Installed so as to allow complete draining of the T&P relief valve and discharge line.

- **T&P relief valve discharge piping must not be:**
 - Excessively long. Using more than 2 elbows or 15 feet of piping can reduce discharge capacity.
 - Directly connected to a drain. Terminate discharge piping within 6” from drain. Refer to local codes.
 - Plugged, reduced or restricted.
 - Subject to freezing.

WARNING

Do not install any valve between T&P relief valve and tank connection or on T&P relief valve discharge piping. Do not plug T&P relief valve or discharge piping. Improper placement and piping of T&P relief valve can cause substantial property damage, serious injury, or death.
CHAPTER 2 - INSTALLATION - PIPING

2.2. Drain Valve
Drain valve and fittings are supplied by others.

2.2.1 Standard Installation
• Install a tee connection at the domestic cold water inlet (Refer to Fig. 3 & Fig. 3 on page 7, and Fig. 4 on page 8).
• Pipe the drain piping with drain valve from the tee connection to:
 – a suitable place for disposal
 – terminate within 12” of the floor

2.2.2 Commonwealth of Massachusetts Installation
• Thread a 3/4” close nipple onto the Auxiliary connection and insert an open end dip tube into the Auxiliary connection on top of water heater, as shown in Fig. 5 on page 9.
• Install a 3/4” NPT elbow to the Auxiliary connection, refer to Fig. 6 on page 9.
• Pipe the drain piping with drain valve from the elbow connection to:
 – a suitable place for disposal
 – terminate within 12” of the floor

2.3. Manual Air Vent
1. A manual air vent is factory installed.
2. Open manual air vent. Once the tank is full and air has stopped escaping, close the manual air vent.

2.4. Thermal Expansion
If a backflow preventer, check valve or pressure reducing valve is piped on cold water supply piping of water heater, install an expansion tank on cold water supply line to prevent normal thermal expansion from repeatedly forcing open T&P relief valve.

CAUTION
T&P relief valve is not intended for constant duty, such as relief of pressure due to repeated normal system expansion. Correct this condition by installing a properly sized expansion tank in domestic water system.
Refer to expansion tank manufacturer’s installation instructions for proper sizing.

2.5. Water Hammer
Dishwashers, clothes washers and fast-closing positive shut-off valves incorporated in the system all contribute to creating water shock. Install a water hammer arrester to prevent damage to pipes and appliances. See device manufacturer’s instructions for application and installation.

NOTICE
Water hammering within the domestic piping system can cause premature failure of the inner tank of the water heater. This type of failure is NOT covered under warranty.

2.6. Vacuum Breaker
Installing a vacuum breaker (Watts N36-M1 or equivalent) on the domestic cold water inlet will prevent damage to the inner tank if a negative pressure is developed in the domestic supply line. See manufacturer’s instructions for application and installation of the vacuum breaker.

2.7. General Piping
• For domestic water piping diagram, refer to Fig. 2 on page 7 thru Fig. 6 on page 9.
• For Boiler water piping, refer to Fig. 7 on page 10 thru Fig. 14 on page 13 Fig. 10 on page 11.
• For Multiple water heater domestic and boiler piping, refer to Fig. 11 on page 12 thru Fig. 14 on page 13.
• See Table 1 on page 5 for domestic and boiler piping connection sizes.
• All plumbing must meet or exceed all local, state and national plumbing codes.
• Use pipe dope or tape suitable for potable water systems.
• Use isolation valves to isolate system components.

2.8. Domestic Piping
• Union on domestic hot water outlet should be piped at a higher elevation than domestic water drain valve. This will make draining the water heater easier.
• Install unions for easy removal of water heater. It is recommended to use dielectric unions or couplings to protect hot and cold water fittings from corrosion when connecting dissimilar materials such as copper and galvanized iron pipe.
CHAPTER 2 - INSTALLATION - PIPING

- If copper pipe is used for domestic water connections, first solder pipe to a threaded adapter and then screw adapter into cold water inlet on top of water heater. Inlet connection contains an internal plastic dip tube which can be damaged by heat from soldering.

NOTICE

Do not apply heat to the cold water inlet when making sweat connections to water heater. Sweat tubing to adapter before fitting adapter to cold water inlet of heater. It is imperative that no heat be applied to the cold water inlet, as it contains a non metallic dip tube.

- When the water supply pressure is higher than 70 psig, it is recommended to install a pressure reducing valve on cold water supply line to prevent water loss through T&P relief valve.
- If the water heater will replace a tankless coil in the boiler, disconnect the piping to coil and allow the water to drain from coil. Do not plug the tankless coil.

DANGER

Plugging tankless coil inlet and outlet will result in substantial property damage, serious injury, or death.

2.9. Thermostatic Mixing Valve

- It is recommended to install an optional mixing valve on the domestic hot water outlet.
- Mixing valve must comply with ASSE 1017

2.10. Recirculation Piping.

- T&P relief valve must be installed in run (straight through leg) of tee located at domestic hot water outlet of water heater.
- It is recommended that the recirculation dip tube be installed in auxiliary connection using a close nipple assembly as shown in Fig. 3 on page 7. See Table 1 below for diameter and length of dip tube.
- A stainless steel or bronze circulator is required on potable water systems.
- Install automatic mixing valve either at the hot water outlet of water heater or each hot water faucet

2.11. Multiple Water Heater Systems

- Parallel Pipe Recirculation Systems - Manifold recirculation return to all water heaters.
- Series Piped Systems - Piped return to the leading (cold water inlet) water heater.
- Install an automatic mixing valve either at the hot water outlet of water heater or each hot water faucet

<table>
<thead>
<tr>
<th>Water Heater Model</th>
<th>Connections (inches)</th>
<th>Recirculation Dip Tube</th>
<th>Draining Dip Tube</th>
<th>Recommended Minimum Boiler Piping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Domestic Water Inlet/Outlet (NPT)</td>
<td>Boiler Water Supply/Return (NPSC)</td>
<td>Auxiliary Connection (NPSC)</td>
<td>Length (Inches)</td>
</tr>
<tr>
<td>SMART 30</td>
<td>3/4</td>
<td>1</td>
<td>3/4</td>
<td>34</td>
</tr>
<tr>
<td>SMART 40</td>
<td>3/4</td>
<td>1</td>
<td>3/4</td>
<td>43</td>
</tr>
<tr>
<td>SMART 50</td>
<td>3/4</td>
<td>1 1/4</td>
<td>3/4</td>
<td>25</td>
</tr>
<tr>
<td>SMART 60</td>
<td>3/4</td>
<td>1 1/4</td>
<td>3/4</td>
<td>34</td>
</tr>
<tr>
<td>SMART 80</td>
<td>1 1/2</td>
<td>1 1/2</td>
<td>1 1/2</td>
<td>25</td>
</tr>
<tr>
<td>SMART 100</td>
<td>1 1/2</td>
<td>1 1/2</td>
<td>1 1/2</td>
<td>32</td>
</tr>
<tr>
<td>SMART 120</td>
<td>1 1/2</td>
<td>2</td>
<td>1 1/2</td>
<td>32</td>
</tr>
</tbody>
</table>
CHAPTER 2 - INSTALLATION - PIPING

2.12. Boiler Piping

- If plastic pipe is used for boiler water piping, it must have a maximum oxygen diffusion rate of 0.1 mg/liter-day for boiler and water heater protection.

NOTICE

The SMART IDWH must be installed on a closed type hydronic system. Failure to provide such a system will result in premature failure of the tank and annulment of warranty.

- Boiler water (including additives) must be practically non-toxic, having toxicity rating or class of 1, as listed in Clinical Toxicology of Commercial Products.

CAUTION

Antifreeze can only be used if the boiler water pressure relief valve is set to 30 psig or below.

- If antifreeze is used in the boiler system, local codes may require a backflow preventer on cold water supply line. Use antifreeze specifically intended for hydronic heating systems. Inhibited propylene glycol is recommended at a maximum 50/50 mixture.

DANGER

Do not use automotive, ethylene glycol or petroleum-based antifreeze. Do not use any undiluted antifreeze. This can cause substantial property damage, serious injury, or death.
1. Shut-off valve
2. Recirculation Circulator
3. Flow Check Valve
4. T&P relief valve
5. Unions
6. Backflow preventer or pressure reducing valve (*)
7. Drain valve
8. Thermal expansion tank (potable)
9. Recirculation dip tube
10. Thermostatic mixing valve (*)

(*) Optional devices may be required by local codes.
1. Shut-off valve
2. Recirculation Circulator
3. Flow Check Valve
4. T&P relief valve
5. Unions
6. Backflow preventer or pressure reducing valve (*)
7. Drain valve
8. Thermal expansion tank (potable)

(* Optional devices may be required by local codes)
CHAPTER 2 - INSTALLATION - PIPING

1. Shut-off valves
2. T&P relief valve
3. Unions
4. Backflow preventer or pressure reducing valve (*)
5. Drain valve
6. Thermal expansion tank (potable)
7. Vacuum breaker
8. Mixing valve (*)
9. Dip tube - Draining per Chart 1
10. (*) Optional devices may be required by local codes.
11. (* Optional devices may be required by local codes.

Fig. 5 - Drain Tube Assembly - Commonwealth of Massachusetts

Fig. 6 - Commonwealth of Massachusetts - Domestic Piping SMART Series
Fig. 7 - SMART System Piping with 3-Port Zone Valve (Domestic Priority)

Fig. 8 - SMART System Piping with 2-Port Zone Valves (Domestic Priority)

1. Shut-off valves
2. Circulator
3. Expansion tank
4. Drain valve
5. Feed valve
6. Air separator
CHAPTER 2 - INSTALLATION - PIPING

1. Shut-off valves
2. Circulator
3. Flow check valve
4. Expansion tank
5. Drain valve

6. Feed valve
7. Air separator
• Recommended for most applications.
• Any one water heater tank thermostat may be utilized to control system temperature.
• Install automatic mixing valve at either the hot water outlet of the water heater system or at each hot water fixture.
• Each tank should be piped with a drain as shown in Fig. 2 on page 7.

Fig. 11 - Multiple SMART Series Water Heater System Domestic Piping - Parallel

• Recommended for applications in which there is a large water consumption in short period of time.
• A maximum of 3 water heaters may be piped in series.
• Utilize the lead (hot water outlet) SMART tank thermostat to control system temperature.
• Install automatic mixing valve at either the hot water outlet of the water heater system or at each hot water fixture.
• Each tank should be piped with a drain as shown in Fig. 2 on page 7.

Fig. 12 - SMART System Piping with Zone Circulators
CHAPTER 2 - INSTALLATION - PIPING

1. Shut-off valves
2. Circulator
3. Flow check valve
4. Expansion tank
5. Drain valve
6. Feed valve
7. Air separator
CHAPTER 3 - INSTALLATION - WIRING

3.1. Wiring Requirements

WARNING

Electrical shock hazard can cause substantial property damage, serious injury, or death. Disconnect power before installing and/or servicing.

1. All wiring must be a minimum of 18 gauge and installed in accordance with:
 - U.S.A. - National Electrical Code and any other national, state or local code requirements having jurisdiction.
 - Canada - C.S.A. C22.1 Canadian Electrical Code Part 1 and any other national, provincial and local code requirements having jurisdiction.

2. If original wire supplied with appliance must be replaced, Type 90ºC or its equivalent must be used.

3. Refer to control component instructions packed with boiler for application information.

4. An optional service switch may be installed in water heater electrical circuit. This switch would only shut off the water heater, not the home heating system. Do not shut off water heater if there is a chance of freezing.

5. All electrical contacts shown do not have power applied - off the shelf condition. See pages 15 to 19.

3.2. Circulators

Priority relay must be sized for total amp draw of all circulators.

3.3. Zone Valves

Transformer must be sized for maximum load of all zone valves.

3.4. Snap Set Connection

For easy wiring between water heater thermostat and boiler controls see wiring diagrams in following pages (refer to Fig. 16 on page 16 thru Fig. 22 on page 19). Make sure snap set is firmly snapped together after wiring.
CHAPTER 3 - INSTALLATION - WIRING

Fig. 16 - Typical 4-wire Zone Valve Zoning, with Domestic Priority

Fig. 17 - Typical 3-wire Zone Valve Zoning, with Domestic Priority
Fig. 18 - Typical 4-wire Zone Valve Zoning, without Domestic Priority

Fig. 19 - Typical 3-wire Zone Valve Zoning, without Domestic Priority

Use isolation relay on 3-wire zone valves with non-isolated end switches. Transformer and boiler control can burn out if isolation relay is not used.
Fig. 20 - Typical Circulator Zoning with Domestic Priority

- Honeywell R845A Relay
- Thermostat zone 1
- Circulator Zone 1
- Water Heater Thermostat Snap-Set
- Priority Relay
- Water Heater Circulator
- Boiler Thermostat Terminals

Fig. 21 - Typical Circulator Zoning without Domestic Priority

- Honeywell R845A Relay
- Thermostat zone 1
- Circulator Zone 1
- Water Heater Thermostat Snap-Set
- Boiler Thermostat Terminals
Note: Maximum of 4 total circulator zone when wiring 1 zone for priority
4.1. Filling the Inner (Domestic Water) Tank

CAUTION
- Never use water heater unless inner and outer tanks are completely filled with water.
- Inner tank must be completely filled and pressurized before pressurizing outer tank.

1. Close domestic water drain valve.
2. Open domestic water isolation valves for water heater.
3. Vent air from inner (domestic water) tank by opening nearest hot water faucet. Fill domestic water tank completely by allowing water to run until there is a constant flow of water.

4.2. Filling the Outer (Boiler Water) Tank

CAUTION
- Never use water heater unless inner and outer tanks are completely filled with water.
- Inner tank must be completely filled and pressurized before pressurizing outer tank.

1. Close boiler water drain valve at boiler water outlet of water heater.
2. Open water heater’s boiler water isolation valves.
3. Allow air to escape from outer (boiler water) tank by opening manual air vent, located on top of water heater.
4. Follow instructions furnished with boiler to fill with water.
5. When tank is full, and air stops escaping, close the manual air vent.
6. If antifreeze is used in boiler water, check concentration. Boiler water (including additives) must be practically non-toxic, having toxicity rating or class of 1, as listed in Clinical Toxicology of Commercial Products.

WARNING
Do not use automotive, ethylene glycol or petroleum-based antifreeze. Do not use any undiluted antifreeze. This can cause substantial property damage, serious injury, or death.

DANGER
HOT WATER CAN SCALD!
Water temperature over 125ºF can cause severe burns instantly or death from scalds.

- Feel water before bathing or showering.
- Consumer Product Safety Commission and some states recommend temperatures settings of 130ºF or less. Setting thermostat higher than 130ºF will increase risk of scald injury and cause severe personal injury or death.
- Water heated to a temperature suitable for clothes washing, dish washing and other sanitizing needs will scald and cause permanent injury.
- Children and elderly, infirm, or physically handicapped persons are more likely to be injured by hot water. Never leave them unattended in or near a bathtub. If anyone using hot water in the building fits this description, or if state laws or local codes require certain water temperatures at hot water faucets, take special precautions.
 - Install an automatic mixing valve at water heater or at each hot water faucet, bath and shower outlet. Selection and installation must comply with valve manufacturer’s recommendation and instructions.
 - Use the lowest practical temperature setting.
 - Check water temperature after any adjustment. You must follow “Adjusting the Water Heater Thermostat” procedures.

WARNING
At no time should boiler limit control be set above 210ºF. This can cause substantial property damage, serious injury, or death if ignored.
NOTICE

• Household water usage patterns will affect water temperature at any faucet or shower. Occasionally check temperature at each point of use, then adjust thermostat accordingly. Always recheck temperature after adjusting thermostat.

• When hot water is used in repeated small quantities, a “stacking” effect can develop in the water heater. The upper layer of water in tank can be hotter than lower layer, resulting in very hot water coming out at the faucet.

• It is therefore recommended to either lower the thermostat setting or install automatic mixing valves as indicated in these instructions in order to reduce water temperature levels. Consult your installer or service technician.

4.3. Adjusting the Water Heater Thermostat

Water heater thermostat is factory set to its lowest temperature. This may or may not be suitable for your needs.

• Turn thermostat knob clockwise to increase water temperature.

• Turn thermostat knob counter-clockwise to decrease water temperature.

WARNING

Bacteria can develop in the domestic water system if certain minimum water temperatures are not maintained. Failure to maintain at least 140°F [60°C] domestic hot water temperature (using the Antilegionella function of your boiler, if any) can result in bacteria development, which can result in serious injury, or death.

• Check water temperature at a hot water faucet immediately after first heating cycle. Further temperature adjustment may be necessary as water heating system is used. Recheck water temperature at faucet after adjustment.

• When adjusting thermostat, be sure boiler limit control is set a minimum of 20°F higher.

Fig. 23 - SMART Series Temperature Knob
CHAPTER 5 - WATER HEATER MAINTENANCE

5.1. Maintenance Schedule

5.1.1 Annual service by qualified service technician should include the following:

☐ Any procedure required by local codes.
☐ Check air vent operation.
☐ Verify system pressure. Air venting procedure may require adding water to bring system up to pressure, typically 12 psig.
☐ Manually operate T&P relief valve at least once a year. This will release some hot water.

WARNING

Before operating T&P relief valve, make sure no one is in front of or around T&P relief valve discharge piping. Hot discharge water can cause substantial property damage or serious injury.

☐ Move operating lever to open position for a few seconds and then move it back, allowing it to snap closed. After T&P relief valve is operated, if it continues to release water, close cold water inlet to water heater immediately. Follow draining instructions, to relieve pressure from the tank and replace T&P relief valve. If T&P relief valve weeps periodically, it may be due to thermal expansion see “Thermal Expansion” on page 4. Do not plug T&P relief valve or discharge piping.

DANGER

Plugging T&P relief valve or discharge piping can cause excessive pressure in water heater, resulting in substantial property damage, serious injury, or death.

☐ Follow instructions on circulator to oil it, if required.
☐ Check mixing valve, valves, pipes and fittings for leaks.
☐ Check function of field-installed controls and valves. See component manufacturer’s instructions.
☐ Review homeowner’s maintenance responsibilities and their frequencies, including any not listed in the following section.

5.1.2 Homeowner monthly maintenance to include:

☐ Check for air.
 • Manual air vent-open and close briefly to release any air.

☐ Check for leaks.
 • Visually check valves, pipes and fittings for leaks. Call qualified service technician to repair any leaks.

5.2. Filling Water Heater

See “Filling the Inner (Domestic Water) Tank” on page 21 and “Filling the Outer (Boiler Water) Tank” on page 21.

5.3. Draining Water Heater

Drain water heater if it will be shut off and exposed to freezing temperatures. Freezing water will expand and damage water heater.

☐ If boiler water contains sufficient antifreeze, then only the domestic water needs to be drained.

CAUTION

Close boiler water isolation valves and relieve system pressure to below 15 psig in outer tank before draining inner tank to prevent damage to inner tank.

☐ If boiler water does not contain sufficient antifreeze, then the boiler water and domestic water must be drained.

If antifreeze is used in boiler water, check concentration. Boiler water (including additives) must be practically non-toxic, having toxicity rating or class of 1, as listed in Clinical Toxicology of Commercial Products. A maximum 50/50 mixture of inhibited propylene glycol is recommended. Follow antifreeze manufacturer’s instruction.

WARNING

Do not use automotive, ethylene glycol or petroleum-based antifreeze. Do not use any undiluted antifreeze. This can cause substantial property damage, serious injury, or death.
CHAPTER 5 - WATER HEATER MAINTENANCE

WARNING

Water from opened drain valves, unions and other connections may be extremely hot. To avoid substantial property damage, serious injury, or death:

- Tighten all drain hose connections.
- Direct hot water away from all persons.

5.3.1 Draining Inner (Domestic Water) Tank.

BEST PRACTICE

There are 3 methods typically used in the draining of the inner tank. The first method outlined as Option 1 is to siphon the water out. This method is typically the easiest to perform, but may be lengthy in time to complete.

The second method, shown as Option 2, uses compressed air. This method is more complicated however it is generally quicker in draining the tank.

The final method, Option 3, use a pump to drain the tank. As with Option 2, Option 3 is generally more complicated, but is quicker in draining the tank.

NOTICE

Prior to draining the inner tank, ensure the following is completed:

- The snap-set wiring connection at the water heater is disconnected.
- The DHW system supply isolation valve is closed.
- The outer (boiler water) tank pressure is less than 15 psig

Reference domestic piping diagram, see Fig. 2 on page 7 thru Fig. 4 on page 8.

Draining Inner Tank - Option 1

1. Connect a hose to the domestic water drain valve at the cold water inlet. The hose should extend to a drain at floor level to allow siphoning of the domestic inner tank.
2. Open a hot water faucet at the highest point above the water heater.
3. Open the domestic water drain valve to start the siphoning of the domestic inner tank.
4. When draining is complete, close the hot water faucet and the domestic drain valve.

Draining Inner Tank - Option 2

1. Connect a hose to the domestic water drain valve at the cold water inlet. Direct the hose to a proper drain/suitable place for drainage.
2. Close the isolation valve on the DHW system hot outlet of the water heater.
3. On the hot water outlet piping between the water heater and the isolation valve install a shrader (air tank) valve or some other fitting or means that allows connection of an air hose from a compressor.
4. Open the domestic water drain valve on the cold water inlet.
5. Apply compressed air at a maximum regulated pressure of 40 psig.
6. When draining is complete, remove the air hose and fittings needed to connect the air hose.
7. Close the domestic water drain valve on the cold water inlet and open the isolation valve on the hot water outlet.

Draining Inner Tank - Option 3

1. Connect the suction side of the pump to the domestic water drain valve using a hose and/or piping fittings.
2. Connect a hose to the discharge side of the pump. Direct the hose to a proper drain or a suitable place for drainage.
3. Open a hot water faucet at the highest point above the water heater.
4. Open the domestic water drain valve and start the pump to begin draining the inner tank.
5. When draining is complete stop the pump, close the hot water faucet and close the domestic drain valve. Remove the pump and all hoses and fittings.

5.3.2 Draining Outer (Boiler Water) Tank

1. Disconnect snap set wiring connection at water heater.
2. Close boiler water isolation valves between boiler and water heater.
3. Connect hose to boiler water drain valve at water heater. Open and drain water to a safe place.
4. To speed draining procedure, open manual air vent on top of tank.
5. When draining is complete, close drain valve and close manual air vent.
CHAPTER 6 - REPLACEMENT PARTS

<table>
<thead>
<tr>
<th>Item</th>
<th>Part #</th>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P3KITAV02</td>
<td>All</td>
<td>Air vent, manual</td>
</tr>
<tr>
<td>2</td>
<td>P3KITTH01</td>
<td>All</td>
<td>Aquastat - 160°F residential</td>
</tr>
<tr>
<td></td>
<td>P3KITTH03</td>
<td>All</td>
<td>Aquastat - 194°F commercial</td>
</tr>
<tr>
<td>3</td>
<td>P3KITBTM02</td>
<td>SMART 30, 40, 50 60</td>
<td>Bottom cap</td>
</tr>
<tr>
<td></td>
<td>P3KITBTM03</td>
<td>SMART 80, 100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P3KITBTM04</td>
<td>SMART 120</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>P3KITTOP02</td>
<td>SMART 30, 40, 50 60</td>
<td>Top cap</td>
</tr>
<tr>
<td></td>
<td>P3KITTOP03</td>
<td>SMART 80, 100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P3KITTOP04</td>
<td>SMART 120</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>P3DW05</td>
<td>SMART 30</td>
<td>Drywell</td>
</tr>
<tr>
<td></td>
<td>P3DW01</td>
<td>SMART 40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P3DW02</td>
<td>SMART 50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P3DW03</td>
<td>SMART 60, 80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P3DW04</td>
<td>SMART 100, 120</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>P3WKITDT01</td>
<td>SMART 30</td>
<td>Dip tube</td>
</tr>
<tr>
<td></td>
<td>P3WKITDT02</td>
<td>SMART 40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P3WKITDT03</td>
<td>SMART 50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P3WKITDT04</td>
<td>SMART 60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P3WKITDT08</td>
<td>SMART 80, 100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P3WKITDT09</td>
<td>SMART 120</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>P3WKITDT01</td>
<td>SMART 30, 60</td>
<td>Dip tube, recirculation</td>
</tr>
<tr>
<td></td>
<td>P3WKITDT02</td>
<td>SMART 40, 50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P3WKITDT08</td>
<td>SMART 80, 100, 120</td>
<td>(cut to length)</td>
</tr>
<tr>
<td></td>
<td>P3WKITDT09</td>
<td>SMART 120</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>P3KITWRS01</td>
<td>All</td>
<td>Snap-set wire harness</td>
</tr>
<tr>
<td>9</td>
<td>P3KNB02</td>
<td>All</td>
<td>Knob</td>
</tr>
<tr>
<td>10</td>
<td>P3CVR04</td>
<td>All</td>
<td>Cover plate</td>
</tr>
</tbody>
</table>
Fig. 26 - SMART Dimensions - Side View

CHAPTER 7 - WATER HEATER SPECIFICATIONS AND PERFORMANCES
CHAPTER 7 - WATER HEATER SPECIFICATIONS AND PERFORMANCES

![Fig. 27 - SMART Dimensions - Top View](image)

Table 2 - SMART Water Heater Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>80</th>
<th>100</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>Gal.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic</td>
<td>28</td>
<td>36</td>
<td>46</td>
<td>56</td>
<td>70</td>
<td>95</td>
<td>119</td>
</tr>
<tr>
<td>Boiler</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiler</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>14</td>
<td>25</td>
<td>43</td>
</tr>
<tr>
<td>Heating Surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heating Surface</td>
<td>13</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>28</td>
<td>36</td>
<td>42</td>
</tr>
<tr>
<td>Head Loss Boiler Side</td>
<td>Ft.</td>
<td>3/4</td>
<td>1</td>
<td>1 1/4</td>
<td>1 1/2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Piping Connections</td>
<td>Inches</td>
<td>Ø 3/4</td>
<td>3/4</td>
<td>3/4</td>
<td>3/4</td>
<td>1 1/2</td>
<td>1 1/2</td>
</tr>
<tr>
<td>Piping Connections</td>
<td></td>
<td>Ø 1</td>
<td>1</td>
<td>1 1/4</td>
<td>1 1/4</td>
<td>1 1/2</td>
<td>1 1/2</td>
</tr>
<tr>
<td>Piping Connections</td>
<td></td>
<td>Ø 3/4</td>
<td>3/4</td>
<td>3/4</td>
<td>3/4</td>
<td>1 1/2</td>
<td>1 1/2</td>
</tr>
<tr>
<td>Dimensions</td>
<td>Inches</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>38</td>
<td>46</td>
<td>57</td>
<td>66</td>
<td>61</td>
<td>78</td>
<td>72</td>
</tr>
<tr>
<td>B</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>C</td>
<td>30</td>
<td>38</td>
<td>49</td>
<td>58</td>
<td>50 1/2</td>
<td>68</td>
<td>64</td>
</tr>
<tr>
<td>D</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>26</td>
<td>26</td>
<td>32</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>10 1/2</td>
<td>10 1/2</td>
<td>10 1/2</td>
</tr>
<tr>
<td>F</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>10 1/2</td>
<td>10 1/2</td>
<td>10 1/2</td>
</tr>
<tr>
<td>Dry well length</td>
<td>Inches</td>
<td>25</td>
<td>29</td>
<td>37</td>
<td>47</td>
<td>47</td>
<td>51</td>
</tr>
<tr>
<td>Empty weight</td>
<td>Lbs.</td>
<td>115</td>
<td>135</td>
<td>165</td>
<td>190</td>
<td>271</td>
<td>362</td>
</tr>
</tbody>
</table>
CHAPTER 7 - WATER HEATER SPECIFICATIONS AND PERFORMANCES

Table 3 - SMART Water Heater Performance at 200°F boiler water supply (140°F DHW outlet)

<table>
<thead>
<tr>
<th>Model</th>
<th>Boiler Heating Capacity MBH</th>
<th>Peak Flow Gal./10 min.</th>
<th>1st Hour Flow Gal./Hour</th>
<th>Continuous Flow Gal./Hour</th>
<th>Circulator Min. GPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMART 30</td>
<td>87</td>
<td>40</td>
<td>140</td>
<td>115</td>
<td>5</td>
</tr>
<tr>
<td>SMART 40</td>
<td>112</td>
<td>50</td>
<td>180</td>
<td>150</td>
<td>7</td>
</tr>
<tr>
<td>SMART 50</td>
<td>140</td>
<td>65</td>
<td>220</td>
<td>185</td>
<td>8</td>
</tr>
<tr>
<td>SMART 60</td>
<td>270</td>
<td>100</td>
<td>410</td>
<td>360</td>
<td>16</td>
</tr>
<tr>
<td>SMART 80</td>
<td>300</td>
<td>125</td>
<td>460</td>
<td>400</td>
<td>18</td>
</tr>
<tr>
<td>SMART 100</td>
<td>337</td>
<td>150</td>
<td>525</td>
<td>450</td>
<td>25</td>
</tr>
<tr>
<td>SMART 120</td>
<td>420</td>
<td>190</td>
<td>650</td>
<td>560</td>
<td>28</td>
</tr>
</tbody>
</table>

Conditions:
- 50°F Domestic cold water inlet temperature
- 140°F Domestic hot water outlet temperature
- 200°F Boiler water supply temperature

Table 4 - SMART Water Heater Performance at 200°F boiler water supply (115°F DHW outlet)

<table>
<thead>
<tr>
<th>Model</th>
<th>Boiler Heating Capacity MBH</th>
<th>Peak Flow Gal./10 min.</th>
<th>1st Hour Flow Gal./Hour</th>
<th>Continuous Flow Gal./Hour</th>
<th>Circulator Min. GPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMART 30</td>
<td>115</td>
<td>60</td>
<td>235</td>
<td>210</td>
<td>8</td>
</tr>
<tr>
<td>SMART 40</td>
<td>130</td>
<td>70</td>
<td>270</td>
<td>240</td>
<td>9</td>
</tr>
<tr>
<td>SMART 50</td>
<td>180</td>
<td>95</td>
<td>370</td>
<td>330</td>
<td>12</td>
</tr>
<tr>
<td>SMART 60</td>
<td>320</td>
<td>145</td>
<td>635</td>
<td>590</td>
<td>21</td>
</tr>
<tr>
<td>SMART 80</td>
<td>340</td>
<td>165</td>
<td>690</td>
<td>630</td>
<td>24</td>
</tr>
<tr>
<td>SMART 100</td>
<td>380</td>
<td>185</td>
<td>775</td>
<td>700</td>
<td>26</td>
</tr>
<tr>
<td>SMART 120</td>
<td>445</td>
<td>235</td>
<td>915</td>
<td>820</td>
<td>30</td>
</tr>
</tbody>
</table>

Conditions:
- 50°F Domestic cold water inlet temperature
- 115°F Domestic hot water outlet temperature
- 200°F Boiler water supply temperature
Additional quality water heating equipment available from Triangle Tube

Maxi-Flo Pool and Spa Heat Exchangers

- Constructed of high quality corrosion resistant stainless steel (AISI 316) or titanium
- Specially designed built-in flow restrictor to assure maximum heat exchange
- Compact and lightweight
- Available in 8 sizes to accommodate any size pool or spa

Instinct Condensing Boilers

- 95% AFUE
- High Efficiency Condensing Boiler & Combi
- Power Range 110 MBH, 155 MBH, 199 MBH
- Turn Down Ratio up to 8:1
- Natural Gas or Propane
- Universal Top Adapter (PVC/PP/SST)
- Outdoor Reset

TTP Brazed Plate Heat Exchangers

- For domestic water, snow melting, radiant floor
- Plates made of stainless steel, with 99.9% copper brazing, ensuring a high resistance to corrosion
- Self cleaning and self descaling
- Computerized sizing available from Triangle Tube
- Available in capacities from 25,000 BTU/hr to 5,000,000 BTU/hr